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Abstract

Problems related to the thermoelastic modeling and behavior of circular cylindrical thin-walled beams
made of functionally graded materials and spinning with a constant speed about their longitudinal axis are
addressed. In this context, the implications of conservative and gyroscopic forces considered in conjunction
with a temperature field that yields the material degradation of the beam elastic properties, on their
vibration and instability are investigated. A continuously graded variation in composition of the ceramic
and metal phases across the beam wall thickness in terms of a simple power law distribution is
implemented. Results highlighting the effects of the volume fraction, temperature gradient (considered in
conjunction with the temperature degradation of material properties), compressive axial load and
rotational speed on vibration and instability of spinning beams are presented and pertinent conclusions
are drawn.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled structural systems spinning about their longitudinal axis are used in the
most diverse areas of modern technology. In this sense, these are used as a shaft, for
power transmission in aeropropulsion systems, in helicopter drive applications, and in industrial
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.09.018

ding author. Tel.: +1 540 231 5916; fax: +1 540 231 4574.

ress: librescu@vt.edu (L. Librescu).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

S.-Y. Oh et al. / Journal of Sound and Vibration 285 (2005) 1071–10911072
machines such as steam and gas turbines. In addition, these are used in the cutting tools used in
boring and milling operations. Moreover, the axial booms attached to spin-stabilized spacecraft
and subjected to solar heating, belong to the category of structural systems considered in this
paper.

In order to enhance their vibrational behavior, eliminate or even postpone the occurrence
of any instability jeopardizing their operational life and expand their efficiency, a
better understanding of their behavior is required. In addition, having in view that
these structural systems operate in severe environmental conditions such as high temperatures,
in order to resist without catastrophic failures, advanced structural models have to be
devised.

In this context, the application of the functionally gradient material (FGM) concept is likely to
eliminate the shortcomings that are inherently generated when instead, standard composite
material structures are used.

The FGMs are special composites, microscopically inhomogeneous whose thermomechanical
properties vary smoothly and continuously in pre-determined directions throughout the body of
the structure. Herein, this feature is achievable by varying the volume fraction of constituent
phases in the thickness direction, that usually are from ceramic and metal.

The ceramic in a FGM offers thermal barrier effects and protects the metal from corrosion and
oxidation, whereas the FGM is toughened and strengthened by the metallic composition.
As a result, these materials are able to withstand high-temperature gradients, without
structural failure. Such features are vital, specially in aeronautical and space applications,
where contradictory functions, such as refractoriness and chemical inertness with toughness
should be met.

In contrast to standard laminated composite structures, whose material properties are piecewise
constant through their thickness, and as a result, are exposed to adverse interface effects that can
yield failure of the structure, in the case of the FGMs, due to the continuous variation of their
material properties, such effects are precluded to occur.

In addition to the research work devoted to modeling of the three-dimensional (3-D)
FGM media, the studies involving thin-walled structures made of FGMs have been
mainly devoted to beams, plates, and shells. For an exhaustive, but far from complete
list of references on the research work accomplished in this area, see Ref. [1]. To the best of the
authors’ knowledge, in spite of its evident practical importance, no research work related to the
modeling and behavior of spinning circular cylindrical thin-walled beams operating in a high-
temperature environment and made of FGMs has been yet accomplished. This paper is devoted to
this topic.

Herein, the case of a straight, circular cylindrical thin-walled beam spinning with a constant
angular velocity about its longitudinal axis and exposed to a steady temperature field experiencing
a gradient through the wall thickness is considered. It is assumed that the beam is made of FGMs
whose properties vary continuously across the wall thickness and that the material properties are
temperature dependent. In this context, the modeling, the vibrational and instability behavior of
circular cylindrical beams spinning about their longitudinal axis are investigated, and the effect of
material degradation due to the temperature field is highlighted. This paper represents
an extension of a number of previous results obtained in the context of composite structures in
Refs. [2,3].
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2. Structural model

2.1. Coordinate systems and basic assumptions

The case of a straight flexible circular cylindrical beam of length L spinning about its
longitudinal z-axis at a constant rate O and subjected to the longitudinal compressive dead force P

is considered (see Fig. 1). Two coordinate systems, an inertial one, OXYZ, and a body attached
rotating frame of reference Oxyz, with their common origin O at the geometric center (coinciding
with the elastic center of the beam), are considered. It is supposed that the axes of the two
coordinate systems coincide only when t ¼ 0 while, in the underformed configuration, the body-
fixed and inertial coordinates Oz and OZ coincide at any time t. Associated with the coordinate
systems ðx; y; zÞ and ðX ;Y ;ZÞ; one define the unit vectors ði; j;kÞ and ðI;J;KÞ; respectively (see
Fig. 2). In addition to the previously defined coordinate systems, a local (surface) one, ðn; s; zÞ;
associated with the thin-walled beam, is considered, where n is the thickness coordinate
ð�h=2pnph=2Þ; while s and z stand for circumferential and the spanwise coordinates,
respectively (see Figs. 1 and 2). As a result of the stipulated assumptions one can represent the
spin rate vector as X ¼ Okð� OKÞ and _X ¼ 0:

Herein, the case of a single-cell thin-walled beam of circular cross-sectional shape is considered.
Toward its modeling, the following assumptions are adopted: (1) the original cross section of the
beam is preserved in the sense that no distortions in the plane of the cross section occur; (2)
transverse shear effects are incorporated; (3) a pointwise variation of material properties of the
two constituent phases, i.e. ceramic and metal across the beam thickness is featured; and (4), the
study is confined to only the coupled transversal–lateral bending that is decoupled from the twist
and extension motions.

2.2. Kinematics

In light of the previously mentioned assumptions, in order to reduce the 3-D elasticity problem
to an equivalent 1-D one, the components of the displacement vector are obtained by specializing
Fig. 1. Geometry of the thin-walled beam of circular cross section.
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for the problem at hand the ones from Ref. [4]:

uðx; y; z; tÞ ¼ u0ðz; tÞ; vðx; y; z; tÞ ¼ v0ðz; tÞ, (1a,b)

wðx; y; z; tÞ ¼ yxðz; tÞ yðsÞ � n
dx

ds

� �
þ yyðz; tÞ xðsÞ þ n

dy

ds

� �
. (1c)

In these equations u0ðz; tÞ and v0ðz; tÞ denote the rigid body translations along the x- and y-axis,
while yxðz; tÞ; yyðz; tÞ denote the rotations about the x- and y-axis, respectively. The expressions of
yx and yy are

yxðz; tÞ ¼ gyzðz; tÞ � v00ðz; tÞ; yyðz; tÞ ¼ gxzðz; tÞ � u0
0ðz; tÞ. (2a,b)

From Eqs. (2) it is seen that in the absence of transverse shear effects:

yxðz; tÞ ¼ �v00ðz; tÞ; yyðz; tÞ ¼ u0
0ðz; tÞ. (3a,b)

In these equations, as well as in those that follow, primes denote differentiation with respect to the
longitudinal z coordinate.

For further use, additional kinematic quantities are indicated here. Among these, the position
vector of a generic point Mðx; y; zÞ belonging to the deformed structure is

Rðx; y; z; tÞ ¼ ðx þ uÞiþ ðy þ vÞjþ ðz þ wÞk, (4)

where x, y and z are the Cartesian coordinates of the points of the continuum in its undeformed
state. Recalling that the spin rate was assumed to be constant, and using the expressions for the
time derivatives of unit vectors, the velocity and acceleration of a generic point are

_R ¼ ½ _u � Oðy þ vÞ	iþ ½_v þ Oðx þ uÞ	jþ _wk, (5a)

€R ¼ ½ €u � 2O_v � ðx þ uÞO2	iþ ½€v þ 2O _u � ðy þ vÞO2	jþ €wk. (5b)

In these equations the superposed dots denote derivatives with respect to time t.
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Based on the displacement representations (1) and (2), in the framework of purely bending
motions, the strain measures assume the form:

Axial strain:

�zzðn; s; z; tÞ ¼ �zzðs; z; tÞ þ n�zzðs; z; tÞ, (6a)

where

�zzðs; z; tÞ ¼ y0xðz; tÞyðs; zÞ þ y0yðz; tÞxðs; zÞ (7a)

and

�zzðs; z; tÞ ¼ y0yðz; tÞ
dy

ds
� y0xðz; tÞ

dx

ds
, (7b)

are the axial strains associated with the primary and secondary warping, respectively.
Tangential shear strain:

�szðn; s; z; tÞ � �szðs; z; tÞ, (8)

where

�szðs; z; tÞ ¼ ½yyðz; tÞ þ u00ðz; tÞ	
dx

ds
þ ½yxðz; tÞ þ v00ðz; tÞ	

dy

ds
. (9)

Transverse shear strain:

�nzðs; z; tÞ ¼ ½yyðz; tÞ þ u00ðz; tÞ	
dy

ds
� ½yxðz; tÞ þ v00ðz; tÞ	

dx

ds
. (10)
2.3. Constitutive equations for functionally graded beams

The design of high-performance spinning structures must meet high efficiency and high
reliability, regardless of the severe temperature gradients under which these may operate. In order
to address these demands, functionally graded ceramic–metal based materials are used. These
materials are isotropic but, due to the fact that the shaft wall can be rather thick, in order to
accomodate this feature, transverse shear effects will be incorporated.

As a result, the thermoelastic constitutive law adapted in this case of thin-walled structures is
expressed as

sss

szz

szn

sns

ssz

2
6666664

3
7777775
¼

Q11 Q12 0 0 0

Q12 Q11 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

2
6666664

3
7777775

�ss

�zz

�zn

�ns

�sz

2
6666664

3
7777775
�

âDT

âDT

0

0

0

2
6666664

3
7777775
. (11)
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Herein, the reduced thermoelastic coefficients are defined as

Q11 ¼
E

1 � n2
; Q12 ¼

En
1 � n2

; Q66 ¼
E

2ð1 þ nÞ
ð� GÞ; Q44 ¼ Q55 ¼ k2G,

â ¼
E

1 � n
a, ð12a2eÞ

where E and n are the Young’s modulus and Poisson’s ratio, respectively, k2 is the transverse shear
correction factor, DTðs; z; nÞ is the steady-state temperature rise from that of the stress free state,
while a is the thermal expansion coefficient. Although assumed to be large, the temperature rise
cannot be however too extreme, as not to trigger, for the metallic constituent, elastoplastic or
viscoelastic responses.

For a model of ceramic/metal FGM, in the case of a uniform wall thickness whose reference
surface is at n ¼ 0; we assume that the material properties vary continuously across the blade
thickness according to the power law distribution [5]:

EðnÞ ¼ ðEc � EmÞ
2n þ h

2h

	 
K

þ Em; nðnÞ ¼ ðnc � nmÞ
2n þ h

2h

	 
K

þ nm,

rðnÞ ¼ ðrc � rmÞ
2n þ h

2h

	 
K

þ rm; aðnÞ ¼ ðac � amÞ
2n þ h

2h

	 
K

þ am, (13a2d)

where subscripts m and c identify the properties affiliated to metal and ceramic, respectively.
In Eqs. (13), K ð0pKp1Þ is the power law exponent. From Eqs. (13) it results that for

n ¼ h=2; E ! Ec; n ! nc and r ! rc; while for n ¼ �h=2; E ! Em; n ! nm and r ! rm:
This shows that consistent with this law, the material properties vary continuously from the top

surface of the beam where the material is entirely ceramic, to fully metal at the bottom surface.
From Eqs. (13) it becomes also evident that, starting with K ¼ 0; for which the beam is entirely of
ceramic, the increase of the volume fraction parameter K implies a continuous increase of the
metal content to the detriment of the ceramic.

It is assumed that the blade is subjected to a steady-state 1-D temperature distribution through
its wall thickness, T ¼ TðnÞ: The temperatures at n ¼ �h=2 are Tðn ¼ h=2Þ � Tt and Tðn ¼

�h=2Þ ¼ Tb; where Tt and Tb denote the temperatures at the top and bottom surfaces of the
FGM beam, respectively.

The temperature distribution in the thickness direction fulfilling the conditions on the bounding
surfaces yields the steady-state temperature distribution TðnÞ;

TðnÞ ¼ Tb 1 þ
lR h=2

�h=2
1

kðnÞ dn

Z n

�h=2

dn

kðnÞ

2
4

3
5, (14a)

where

l ¼
Tt � Tb

Tb

(15)
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represents a measure of the normalized temperature gradient across the beam wall thickness,
where kðnÞ is the thermal conductivity. Throughout the numerical simulations, it will be
considered Tb ¼ 300K:

As concerns the thermal conductivity kðnÞ of the FGM, it is assumed to vary according to the
law

kðnÞ ¼ ðkc � kmÞ
2n þ h

2h

	 
K

þ km (16)

and that the thermal conductivities kc and km are temperature-independent. With the exception of
this restriction, the remaining properties of the FGM are temperature dependent, and vary
according to the law obtained from experiments. These are expressed in a generic form as [5]

PðnÞ ¼ P0ðP�1=T þ 1 þ P1T þ P2T2 þ P3T3Þ. (17)

Herein, P0; P�1; P1; P2 and P3 are the constants in the cubic fit of the specific temperature-
dependent material property, where T (in Kelvin) is the environmental temperature. For the
constituents phases of silicon nitride (SN) and stainless steele (SS), the constants Pi are supplied
e.g. in Ref. [5]. For the sake of completeness their values are supplied in Table 1.

As an alternative procedure, the Mori–Tanaka mean field scheme can be applied to evaluate the
locally effective material properties (see Ref. [6]).

Consistent with the present case, the 1-D constitutive equations determined in conjunction with
Eqs. (11) and (13) are

My

Mx

Qx

Qy

2
66664

3
77775 ¼

a22 0 0 0

0 a33 0 0

0 0 a44 0

0 0 0 a55

2
6664

3
7775

y0y
y0x

u0
0 þ yy

v00 þ yx

2
66664

3
77775þ

MT
y

MT
x

0

0

2
66664

3
77775. (18)

In these equations, aijð¼ ajiÞ are stiffness coefficients while MT
y and MT

x are 1-D thermal moment
terms. In addition, (Qx and Qy) denote the 1-D shear forces in the x- and y-directions,
Table 1

Material properties of FGM constituents

Material Materials P0 P�1 P1 P2 P3

properties

SN 348:43  109 0 �3070  10�4 2:160  10�7
�8946  10�11

E ðN=m2Þ

S-S 201:04  109 0 3:079  10�4 �6:534  10�7 0

SN 0.2400 0 0 0 0

n
S-S 0.3262 0 �2:002  10�4 3:797  10�7 0

S-N 2370 0 0 0 0

r ðkg=m3Þ

S-S 8166 0 0 0 0

The properties are evaluated at T ¼ 300K:
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respectively, and ðMx;MyÞ are the 1-D stress couples about the x- and y-axis, respectively. Their
expressions are displayed in Appendix A.

2.4. Equations of motion and boundary conditions

To derive the equations of motion of functionally graded circular cylindrical spinning shaft and
the associated boundary conditions, the extended Hamilton’s principle is used. This can be
formulated as Z t2

t1

ðdK� dV þ dW Þdt ¼ 0, (19)

du0 ¼ dv0 ¼ dyx ¼ dyy ¼ 0 at t ¼ t1; t2,

where K and V are the kinetic and strain energy, respectively, dW is the virtual work of external
forces, t1 and t2 are two arbitrary instants of time, and d is the variation operator. In this contextZ t2

t1

dKdt � �

Z t2

t1

dt

Z
t
r €R � dRdt

	 


¼ �

Z t2

t1

dt

Z
t
f½ €u � 2O_v � O2ðx þ uÞ	du þ ½€v þ 2O _u � ðy þ vÞO2	dv þ €wdwgrdt

¼ �

Z t2

t1

€u0 � 2O_v0 � O2ðx þ u0Þ
 �

du0

�
þ ½€v0 þ 2O _u0 � ðy þ v0ÞO2	dv0

þ y � n
dx

ds

	 

€yx þ x þ n

dy

ds

	 

€yy

� �
d yx y � n

dx

ds

	 

þ yy x þ n

dy

ds

	 
� ��
dt. ð20Þ

In this equation dtð� ds dn dzÞ and r denote the differential volume element and the material mass
density, respectively. For the variation of the strain energy dV one obtains (see Refs. [2,3])Z t2

t1

Z
t
sijd�ij dtdt ¼

Z t2

t1

Z L

0

�fðM 0
y � QxÞdyy þ ðM 0

x � QyÞdyx þ ½Q0
x þ ðTzu

0
0Þ

0
	du0

þ ½Q0
y þ ðTxv00Þ

0
	dv0gdz dt þ

Z t2

t1

½Mydyy þ Mxdyx

þ ðQx þ Tzu
0
0Þdu0 þ ðQy þ Tzv

0
0Þdv0	

L
0 dt. ð21Þ

These equations are supplied in terms of 1-D stress-resultants (Tx; Qx and Qy) that denote the
axial and the shear forces in the x- and y-directions, respectively, and stress couples ðMx;MyÞ

about the x- and y-axis, respectively. Their expressions are

Tzðz; tÞ ¼

I
Nzz ds; Myðz; tÞ ¼

I
xNzz þ Lzz

dy

ds

	 

ds,

Mxðz; tÞ ¼

I
yNzz � Lzz

dx

ds

	 

ds; Qxðz; tÞ ¼

I
Nsz

dx

ds
þ Lzn

dy

ds

	 

ds,

Qyðz; tÞ ¼

I
Nsz

dy

ds
� Lzn

dx

ds

	 

ds. (22a2e)
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As concerns the virtual work of external forces, its expression is

dW ¼

Z L

0

½pxdu0 þ pydv0 þ mxdyx þ mydyy	ds

þ ½Q
�x

du0 þ Q
�y

dv0 þ M
�x

dyx þ M
�y

dyy	j
L
0 , ð23Þ

where px and py are the distributed loads, mx and my are the distributed moments about the axes x
and y, respectively, while the quantities underscored by a tilde denote prescribed quantities. Using
Eqs. (20)–(23) in Hamilton’s principle, invoking the stationarity of the functional in the time
interval ½t1; t2	 and the fact that the variations ðdu0; dv0; dyx; dyyÞ are independent and arbitrary,
their coefficients in the integrands must vanish independently. This yields the equations of motion
and the boundary conditions.

As a result, from Eq. (19), there are obtained the governing equations involving the transversal
bending (flapping)-lateral bending (lagging)- transverse shear coupling. In addition, with the effect
of a longitudinal dead force P positive in compression, the governing equations read

du0 : a44ðu
0
0 þ yyÞ

0
� Pu00

0 þ pxðz; tÞ ¼ b1 €u0 � 2b1O_v0 � b1u0O2,
� � �

dv0 : a55ðv
0
0 þ yxÞ

0
� Pv000 þ pyðz; tÞ ¼ b1 €v0 þ 2b1O _u0 � b1v0O2,

� � �

dyy : a22y
00
y � a44ðu

0
0 þ yyÞ þ myðz; tÞ ¼ ðb5 þ dnb15Þ

€yy þðMT
y Þ

0,

dyx : a33y
00
x � a55ðv

0
0 þ yxÞ þ mxðz; tÞ ¼ ðb4 þ dnb14Þ

€yx þðMT
x Þ

0 (24a2d)

and the boundary conditions at z ¼ 0; L:

du0 : Qx ¼ Q
�x

or u0 ¼ u
�0

,

dv0 : Qy ¼ Q
�y

or v0 ¼ v
�0

,

dyy : My ¼ M
�y

or yy ¼ y
�y

,

dyx : Mx ¼ M�x or yx ¼ y
�x

. (25a2d)

In terms of displacement quantities, the static version of homogeneous boundary conditions
becomes

du0 : a44ðu
0
0 þ yyÞ � Pu00 ¼ 0,

dv0 : a55ðv
0
0 þ yxÞ � Pv00 ¼ 0,

dyy : a22y
0
y ¼ MT

y ,

dyx : a33y
0
x ¼ MT

x . (26a2d)
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The coefficients bi appearing in these equations as well as in the forthcoming ones denote reduced
mass terms, while dn is a tracer that takes the values 1 or 0, depending on whether the effects off
the mid-line contour are taken into consideration, or discarded, respectively. The expression of bi

are provided in Appendix A. The system of governing equations reveals a coupling among the
transversal bending, the lateral bending and the transverse shear effects. As it clearly appears, the
coupling between the transversal and lateral bending is due to only the Coriolis effect. Its terms
are associated with the gyroscopic effect and are underscored by a dotted line. The terms
underscored by a solid line are associated with the rotatory inertias.
3. Euler–Bernonulli counterpart of the governing equations

The classical version of the governing equations and of boundary conditions can be obtained by
exactly eliminating the a44ðu

0
0 þ yyÞ and a55ðv

0
0 þ yxÞ terms among Eqs. (24) and (26), and

considering afterwards yy ! �u0
0 and yx ! �v00: This way we obtain the following governing

equations:

du0 : a22u0000
0 þ Pu000 � px � m0

y þ b1ð €u0 � O2u0Þ � 2b1O_v0 � ðb5 þ dnb15Þ €u
00
0

þ ðMT
y Þ

00
¼ 0;

dv0 : a33v00000 þ Pv000 � py � m0
x þ b1ð€v0 � O2v0Þ þ 2b1O _u0 � ðb4 þ dnb14Þ€v

00
0

þ ðMT
x Þ

00
¼ 0: ð27a;bÞ

As concerns the classical homogeneous counterpart of the boundary conditions, these are:

du0 : M 0
y ¼ 0; or u0 ¼ 0,

dv0 : M 0
x ¼ 0; or v0 ¼ 0,

du00 : My ¼ 0; or u0
0 ¼ 0,

dv00 : Mx ¼ 0; or v00 ¼ 0. (28a2d)

In terms of displacement quantities, the static boundary conditions are:

dv0 : a33v0000 þ Pv00 � ðb4 þ dnb14Þ€v
0
0 þðMT

x Þ
0
� mx ¼ 0,

du0 : a22u000
0 þ Pu00 � ðb5 þ dnb15Þ €u

0
0 þðMT

y Þ
0
� my ¼ 0,

du0
0 : a22u00

0 þ MT
y ¼ 0,

dv00 : a33v000 þ MT
x ¼ 0. (29a2d)

As a mere remark, the governing equations for the shearable and unshearable beam models
feature the same order, namely eight, and as a result, in both cases, four boundary conditions
should be prescribed at z ¼ 0; L.



ARTICLE IN PRESS

S.-Y. Oh et al. / Journal of Sound and Vibration 285 (2005) 1071–1091 1081
It should be pointed out that when discarding the rotatory inertia terms in Eqs. (27), and in the
absence of damping, these equations coincide with those from Ref. [7].
4. Solution methodology of the eigenvalue problem

Toward the goal of solving the eigenvalue problem of the gyroscopic system as given by Eqs.
(24)–(26) corresponding to the shearable beam model, the following steps will be implemented.
The first one consists of the representation of displacement functions in the form

u0ðz; tÞ ¼ UTðzÞquðtÞ; v0ðz; tÞ ¼ VTðzÞqvðtÞ,

yxðz; tÞ ¼ XTðzÞqxðtÞ; yyðz; tÞ ¼ YTðzÞqyðtÞ, (30a2d)

where

U � ½u1; u2; . . . ; uN 	
T; V � ½v1; v2; . . . ; vN 	

T,

X � ½X 1; X 2; . . . ; X N 	
T; Y � ½Y 1; Y 2; . . . ; Y N 	

T (31a2d)

are the vectors of trial functions, and

qu � ½qu
1; qu

2; . . . ; qu
N 	

T; qv � ½qv
1; qv

2; . . . ; qv
N 	

T,

qx � ½qX
1 ; qX

2 ; . . . ; qX
N 	

T; qy � ½qY
1 ; qY

2 ; . . . ; qY
n 	

T (31e2h)

denote the vectors of generalized co-ordinates, while the superscript T denotes the transpose
operation. Replacing representation (30) in the variational integral (19) (see Ref. [8]), considered
in conjunction with the proper expressions of the various energies involved in Eqs. (20)–(22) and
the kinematical equations (1) and (2), and carrying out the indicated variations and the required
integration, the discretized form of the equation governing the motion of the gyroscopic system is
obtained as

M€qðtÞ þG_qðtÞ þ KqðtÞ ¼ 0. (32)

Herein, M and K are the symmetric mass matrix and the stiffness matrix, respectively, G is the
skew-symmetric gyroscopic matrix, while

q � qT
u ; qT

v ; qT
x ; qT

y

h iT
	 


(33)

is the 4N  1 overall vector of generalized coordinates. Using the method presented in Ref. [8],
Eq. (32) will be expressed in state-space form. In this sense, upon defining the 8N  1 state vector
X ¼ ½qT; _qT	T and adjoining the identity _q ¼ _q; Eq. (32) is converted to

_XðtÞ ¼ AXðtÞ, (34)

where the 8N  8N state matrix A is given by

A ¼
0 I

�M�1K �M�1G

� �
, (35)
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while I and O are the identity and the zero matrix, respectively. Upon expressing XðtÞ in Eq. (34)
as

XðtÞ ¼ Z exp ðLtÞ, (36)

where Z is a constant vector and L a constant-valued quantity, both generally complex, a
standard eigenvalue problem is obtained:

ðZ� LIÞX ¼ 0, (37)

that can be solved for the eigenvalues Lr and eigenvectors Xr: As shown in Ref. [3], depending
upon the positive definiteness, positive semi-definiteness and negative definiteness of the stiffness
matrix K which contains elements associated with O2 and the compressive load, the eigenvalues of
Eq. (34) can be, respectively: (1) purely imaginary, which implies pure oscillatory motion, the
eigenvalues appearing as purely imaginary pairs Lr ¼ �ior ðr ¼ 1; 2; . . . ;NÞ; where or are the
rotating (whirling) frequencies; (2) at least one eigenvalue can be zero (which implies divergent
motion); or (3) the eigenvalues can be complex conjugate with at least one of these having a
positive real part, which implies unstable motion, the instability being of the flutter type.
Although this type of instability is typical for non-conservative systems, this can occur also in the
case of conservative gyroscopic systems.
5. Validation of the solution methodology

In order to validate the solution methodology that was used here, namely the extended Galerkin

method (EGM), a comparison of the divergence instability predictions for a circular cylindrical
spinning shaft based on the present solution methodology and on the dynamic stiffness method

(DSM) used in Ref. [9], is presented. In Ref. [9] the case of a solid beam was considered. Since the
equations for solid and thin-walled beams are similar in form, the following global parameters
translated to our notations were considered: a44=a22 ¼ a55=a33 ¼ 21:82ð1=m2Þ; ðb4 þ b14Þ=a33 ¼

ðb5 þ b15Þ=a22 ¼ 3:71  10�8ðs2Þ; b1=a44 ¼ b1=a55 ¼ 1:09  10�7ðs2Þ; and L ¼ 10ðmÞ:
Table 2

Comparison of the divergence critical spinning speed of the shaft based on the extended Galerkin method and dynamic

stiffness method

Critical spinning speed O (rad/s)

Mode number Euler–Bernoulli beam Timoshenko beam

DSM [9] EGM DSM [9] EGM

1 64.01 64.01 63.92 63.88

2 256.1 256.1 254.5 254.1

3 1024.2 1024.2 568.4 565.6

4 1600.3 1600.3 999.8 995.9

5 2304.5 2304.5 1540.9 1539.5
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The results of this comparison are supplied in Table 2, wherefrom the conclusion that both
solutions show an excellent agreement becomes evident. Moreover, the results reveal that the
Euler–Bernoulli model overestimates the critical speed, especially at the high mode number.
6. Results

Throughout the numerical simulations, unless otherwise stated, the following geometrical
characteristics are used: L ¼ 80 in ð2:032mÞ; h ¼ 0:4 in ð0:01mÞ; R ¼ 5 in ð0:127mÞ:

In addition, the displayed results will be presented in terms of the normalized natural
frequencies and spin rate that are defined by oi � oi=ô1; O � O=ô1; where the normalizing
fundamental frequency ô1 ð¼ 375:43 rad=sÞ corresponds to the fully-metallic non-spinning beam
counterpart, in the case of the absence of the thermal gradient ðl ¼ 0Þ and of the axial load.

In Fig. 3, in the absence of the compressive load, the dependence of o1ð� o1=ô1Þ vs. the
normalized spin rate Oð� O=ô1Þ is depicted. Two extreme values of the parameter K,
corresponding to the fully metallic beam ðK ¼ 10Þ and to the fully ceramic one ðK ¼ 0Þ have
been considered.

From this figure it clearly appears that for O ¼ 0; due to the circular cylindrical beam shape, the
frequencies in transversal and lateral bending of each mode coincide. For Oa0; due to the
Coriolis gyroscopic effect, a bifurcation of natural frequencies is experienced, resulting in the
upper and lower frequency branches (see e.g. Refs. [3,7,10]). The minimum spin rate at which the
lowest rotating natural frequency becomes zero-valued is referred to as the critical spinning speed,
Fig. 3. The effect of temperature gradient on the spinning speed: P ¼ 0; —, lower branch; – – – –, upper branch.
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and corresponds to the divergence instability. Beyond the critical spinning speed, as it appears in
Fig. 3, the increase of O results in the increase of the frequency corresponding to the lower
frequency branch.

The displayed results also reveal that in the case of the fully metallic beams, the lowest non-
rotating natural frequency and the lowest critical divergence spin speed are experienced. However,
with the decay of K, implying an increase of the concentration of the ceramic phase in the
detriment of the metallic one, a beneficial trend consisting both of the increase of the non-spinning
natural frequencies and of the critical spinning speed are resulting. As a limiting case, for a fully
ceramic beam, the highest non-rotating natural frequency and critical speed of divergence are
resulting.

At the same time, for this case, the upper and lower frequency branches remain, for any O;
parallel to each other. From this plot it appears that the thermal degradation of material
properties, materialized by the thermal gradient measure l; has rather marginal implications on
the eigenfrequency and divergence spin.

In Fig. 4 is depicted the variation of the frequency o1 in the condition of the non-spinning beam
ðO ¼ 0Þ; and for selected values of the volume fraction parameter K, vs. the dimensionless
compressive axial load Pð� P=PcrÞ; where the critical axial compressive load Pcr � Sam

33=L2; and
S ¼ 2:407; while am

33ð� 1:359  107 Nm2Þ is the bending normalizing stiffness corresponding to
the non-rotating fully-metallic beam for the case l ¼ 0:

The results reveal that the increase of the compressive load yields a continuous decrease of the
fundamental non-rotating eigenfrequency. The values of P yielding the frequency to vanish
constitutes the critical (buckling) axial load. The loss of stability in this case is by divergence. The
results of Fig. 4 reveal that the increase of the ceramic phase in the detriment of the metallic one,
Fig. 4. Variation of the first non-rotating natural frequency vs. the dimensionless compressive axial load for selected

values of K, ðl ¼ 3; O ¼ 0Þ: —K—, SN ðK ¼ 0Þ; —’—, K ¼ 0:2; —m—, K ¼ 0:5; —.—, K ¼ 1:0; —1—, SS.
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that reverts to the decrease of the parameter K, is accompanied by both an increase of the
eigenfrequency and of the buckling load.

With the start of the beam spinning, a new phenomenon is experienced. In this sense, in Fig. 5,
for a prescribed spin speed ðO ¼ 0:5Þ; l ¼ 3; and selected values of K, the variation of o1 vs. P is
depicted.

The results reveal that for a certain P that depends on the selected value of the parameter K, the
upper and lower branches of the rotating frequency coalesce, and beyond that specific value of P;
the frequencies of the two branches become complex conjugate.

That specific value of P at which the lower and upper frequency branches are merging
corresponds to the compressive load of flutter, Pflutter (see Refs. [11,12]). As it clearly appears from
Fig. 5, the spinning circular cylindrical beam experiences also the instability by divergence Pdiv at
that critical value of P where the eigenfrequency vanishes.

From Fig. 5 it is also seen that when the ceramic constituent phase increases in the deteriment
of the metallic phase, both Pdiv and Pflutter increase. Moreover, with the decrease of K their values
become closer and closer, but always we have that PdivoPflutter:

With the increase of O; as Figs. 6(a) and (b) reveal, the beam whose constituent phase is richer
in metal, experiences only the flutter instability. With the increase of O this trend is exacerbated.

In this sense, from Fig. 6(a), one can see that for O ¼ 1; only the beam constituted of full metal
experiences the flutter instability, while from Fig. 6(b), when O ¼ 2; only the fully ceramic beam
experiences both divergence and flutter, the other ones corresponding to various K experiencing
both types of instability, i.e. flutter and divergence. The trend of the increase of the Pflutter with the
decay of K toward fully ceramic beams remains certainly valid in all these cases.
Fig. 5. Variation of the upper and lower frequency branches vs. the compressive axial load for selected values of K,

ðl ¼ 3; O ¼ 0:5Þ: —, upper branch; �����; lower branch; —K—, SN (K ¼ 0); —’—, K ¼ 0:2; —m—, K ¼ 0:5;
—.—, K ¼ 1:0; —1—, SS.
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Fig. 6. Variation of the upper and lower frequency branches vs. the compressive axial load for selected values of K

ðl ¼ 3Þ for: (a) O ¼ 1; (b) O ¼ 2: —, upper branch; �����; lower branch; —K—, SN (K ¼ 0); —’ —, K ¼ 0:2;
—m—, K ¼ 0:5; —.—, K ¼ 1:0; —1—, SS.

Fig. 7. Stability map in the O� P plane displaying the domains of stability, divergence and flutter instability

boundaries, for selected values of K ðl ¼ 3Þ: ——, SS; – – – –, K ¼ 1:0; — — —, SN ðK ¼ 0Þ:
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In Fig. 7 there is depicted a stability plot of the spinning system in the O� P plane, for a fixed
beam thickness, thermal gradient l ¼ 3; and three selected values of K. As it can be seen, this plot
summarizes the behavior, from the instability point of view, as presented in Figs. 4–6. In this plot
the divergence boundary and that of flutter are indicated, as well as the stable domains.
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From this plot one can see that with the increase of O and/or P; instabilities by divergence and
flutter may occur. This figure as well as the previous ones, Figs. 4–6, reveal that for a spinning and
compressed circular cylindrical beam, the divergence occurs only on the indicated boundary, that
is bordered by the stability domains. Moreover, the results from Fig. 7 show that the gyroscropic
effects increasing with O contribute to the increase of the stability domain.

The results reveal again that the decrease of K towards the fully ceramic beam, K ¼ 0; yields a
dramatic increase of the stability domains and a shift of the divergence and flutter instability
boundaries toward larger compressive loads. In order to have a better view of the occurrence of
the instability, in Table 3 full information about the combined implications of the spinning speed,
compressive load and the thermal gradient on both the instability by divergence and flutter of the
spinning cylindrical beam, and on the domains of stability are presented. The conclusions
emerging from this table enforce the previously outlined ones.

In Fig. 8 there is depicted the variation of o1 vs. K, for selected slenderness ratios L/R, where L

is fixed to L ¼ 80 in; and for two values of l: The results reveal that the increase of R yields an
increase of the fundamental frequency. It is also seen that the effects of the thermal degradation of
material properties appear to be exacerbated in the case of larger R, and tend to be attenuated
when R decreases. However, as it appears from Fig. 9 depicting the variation of the
eigenfrequency o1 vs. K for selected values of the thickness ratio h=R; where R ¼ 5 in; is fixed,
and for two values of l; the effect of the beam wall thickness is really marginal.

In Fig. 10 is depicted the variation of the non-rotating fundamental frequency o1 vs. K for
selected values of the dimensionless compressive load and a fixed value of lð¼ 3Þ: The results
reveal that the increase of P yields a decrease of o1; a trend that is exacerbated by the increase of
P: As a general conclusion emerging from Figs. 8 to 10, the increase of K, results in a decay of the
eigenfrequencies.
Table 3

Stability and instability domains as influenced by the spinning speed, compressive load, and volume fraction parameter

ð0pPstableoPdiv;PdivpPstableoPflutterÞ

O 0 0.5 1.0 1.5 2.0

l ¼ 0 l ¼ 3 l ¼ 0 l ¼ 3 l ¼ 0 l ¼ 3 l ¼ 0 l ¼ 3 l ¼ 0 l ¼ 3

K ¼ 0 Pdiv 1.553 1.434 1.488 1.350 1.289 1.170 0.943 0.823 0.432 0.307

(SN) Pflutter * * 1.552 1.434 1.550 1.433 1.546 1.429 1.542 1.425

K ¼ 0:2 Pdiv 1.461 1.341 1.369 1.249 1.078 0.965 0.579 0.460 * *

Pflutter * * 1.460 1.340 1.457 1.339 1.452 1.333 1.446 1.328

K ¼ 0:5 Pdiv 1.369 1.247 1.250 1.128 0.879 0.745 0.212 0.079 * *

Pflutter * * 1.368 1.245 1.368 1.243 1.358 1.237 1.349 1.229

K ¼ 1:0 Pdiv 1.278 1.148 1.131 1.000 0.670 0.537 * * * *

Pflutter * * 1.276 1.148 1.271 1.143 1.263 1.137 1.253 1.127

SS Pdiv 1.000 0.792 0.770 0.562 0.009 * * * * *

Pflutter * * 0.997 0.791 0.991 0.785 0.979 0.772 0.964 0.758
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Fig. 8. Variation of the fundamental natural frequency against K for selected values of L=R and two values of l: —–,

l ¼ 0; - - - - - , l ¼ 4 ðO ¼ P ¼ 0:2;L ¼ fixed ¼ 80 inÞ: —.—, L=R ¼ 16; —K—, L=R ¼ 10; —’—, L=R ¼ 5:

Fig. 9. Variation of the fundamental natural frequency against K for selected values of h=R and two values of l: —–,

l ¼ 0; - - - - - , l ¼ 4 ðO ¼ P ¼ 0:2;R ¼ 5 inÞ: —.—, h=R ¼ 4
50
; —K—, h=R ¼ 8

50
; —�—, h=R ¼ 12

50
:
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Fig. 10. Fundamental non-rotating natural frequency vs. the parameter K for selected values of the axial load: —–,

P ¼ 0; – ——–, P̄ ¼ 0:3; —�—�—, P ¼ 0:6; – – – –, P ¼ 0:9:

Table 4

Comparison of dimensionless first natural frequency o1 determined via the simple rule of mixtures ðR-MÞ and the

Mori–Tanaka ðM-TÞ scheme for selected values of the temperature gradient and the volume fraction parameter

ðO ¼ 0;P ¼ 0Þ

l ¼ 0 l ¼ 3 l ¼ 5

R-M M-T M-R M-T M-R M-T

K ¼ 0 (SN) 2.3145 2.3145 2.2249 2.2249 2.1526 2.1526

K ¼ 0:2 1.8920 1.8830 1.8132 1.8010 1.7417 1.7100

K ¼ 0:5 1.6127 1.6010 1.5392 1.5233 1.4635 1.4253

K ¼ 1:0 1.4075 1.3967 1.3354 1.3206 1.2502 1.2408

SS 1.0000 1.0000 0.8903 0.8903 0.6792 0.6792
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Finally, in Table 4 is presented a comparison of the first dimensionless natural frequency o1

determined for selected values of l and K, via the simple rule of mixture ðR-MÞ and the
Mori–Tanaka ðM-TÞ scheme [6], for (O ¼ 0;P ¼ 0).The results based on these two homogeneiza-
tion methodologies reveal an excellent agreement of predictions.
7. Conclusions

A study devoted to the vibrational and stability behavior of FGM spinning circular cylindrical
thin-walled beams was presented, and the implications played by the conservative and gyroscopic



ARTICLE IN PRESS

S.-Y. Oh et al. / Journal of Sound and Vibration 285 (2005) 1071–10911090
forces on their instability behavior have been highlighted. In addition, the effects played by the
presence of the two phases in the constitution of the FGM, i.e. ceramic and metal, and the
relative proportion of these phases measured in terms of the power-law parameter K have
been addressed. The thermal degradation of the material characteristics has been included
in the structural model and its effects have been assessed. As shown, at the conditions described in
the paper, the spinning beam can experience instabilities by flutter and divergence and in this
context, the strong effect played by the volume fraction parameter was outlined. As revealed in
Ref. [7], incorporation of structural damping can have a strong influence on the stability
of a spinning shaft, as compared to the case of its discard. Its effect will be addressed in a
forthcoming paper.

It is hoped that the results and conclusions reported here will be of benefit to those engaged in
the study, design and implementation of the FGM concept in spinning circular cylindrical
structures.
Appendix A. Expressions of stiffness, mass and temperature terms

The 1-D thermal loading terms are expressed by

MT
x ðzÞ ¼

I
yN̂

T

zz �
dx

ds
L̂

T

zz

� �
ds; MT

y ðzÞ ¼

I
xN̂

T

zz þ
dy

ds
L̂

T

zz

� �
ds,

where

N̂
T

zzðs; zÞ ¼ 1 �
A12

A11

	 

NT

zz; L̂
T

zz ¼ LT
zz �

B12

A11
NT

zz

and

NT
zz;L

T
zz

� �
¼

Z h=2

�h=2
DT âðQ11 þ Q12Þð1; nÞdn,

Aij and Bij denoting the shell-stiffnesses in stretching and coupled bending–stretching,
respectively. Concerning the non-vanishing stiffness and inertia coefficients, these are

a22 ¼ a33 ¼ pR½K11R2 þ K44	; a44 ¼ a55 ¼ pR½K22 þ A44	,

b4 þ dnb14 ¼ b5 þ dnb15 ¼ pR½m0R2 þ dnm2	.

In these expressions [4],

K11 ¼ A11 �
A2

12

A11
; K22 ¼ A66; K44 ¼ D22 �

B2
12

A11

and

ðm0;m2Þ ¼

Z h=2

�h=2
ðrc � rmÞ

2n þ h

2h

	 
K

ð1; n2Þ þ rmð1; n2Þ

" #
dn.
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